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How Invariant is the Measured
Equation of Invariance?

Jovan O. Jevti€, Student Member, IEEE, and Robert Lee, Member, IEFE

Abstract—We prove that the measured equation of invariance
(MED is not invariant to the excitation. The proof is based on
the fact that different sets of sinusoidal metrons produce different
boundary equations, even when the nodal separation is infinitely
small. These results follow from the rigorous analytical deriva-
tions which are also verified numerically. The noninvariance of
the MEI emphasizes the importance of the proper choice of
metrons and indicates that this choice should be influenced by
the excitation and geometry in question.

I. INTRODUCTION

HE MEASURED equation of invariance (MEI) has been

introduced by Mei et al. [1] as a novel boundary trunca-
tion technique for use in finite element and finite difference
methods. The MEI is constructed using a set of outgoing fields
that originate from the currents flowing on the surface of the
scatterer, These currents are called metrons. An analysis of
the MEI, with detailed derivations, discussions, and numerical
examples can be found in [2] and [3].

It is postulated in [1] that the MEI is invariant to the
excitation or, equivalently, to the particular set of metrons
used. If this is true, it would not matter what metrons are
used as long as they permit us to find the MEIL Thus,
we would have a very robust way to construct a boundary
condition, independent of the excitation in question. However,
the numerical results in [4] and [5] suggest that this is not true.
Indeed, we will prove that the above mentioned postulate is
incorrect.

The MEI is analyzed on a circular boundary. We simplify
the results by considering an electrically large cylinder and
using the asymptotic form of the MEI. This is derived analyt-
ically and tested numerically. Two different sets of sinusoidal
metrons are used, and they result in two different boundary
equations. In fact, we show that they are different even in the
limit as the nodal separation goes to zero.

II. THE MEI FORMULATION

The geometry is shown in Fig. 1. A TM polarized wave,
whose wavenumber equals k, is normally incident on a per-
fectly conducting circular cylinder of radius a. A regular finite
difference (FD) grid is constructed such that the radial and
angular spacings between neighboring nodes are respectively
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Perfectly conducting circular cylinder geometry for analysis of the

Ap and Ag. The radius of the outer mesh boundary is b. The
MEI equation for node number 6 is given by:

6
> aiE(pis¢s) =0 6))
=1 .

Here E? is the scattered electric field, and p; and ¢; are the
coordinates of node .

According to the MEI method we need at least 5 metrons
to determine the MEI coefficients a;. The coefficients must
be chosen such that the MEI is exactly satisfied for all fields
radiated by the metrons. Thus, if we choose the lowest order
sinusoidal currents for metrons:

e—-j2¢’ e—j¢, 1, e]'¢’ el2¢ )

the MEI (1) must satisfy:

6
Z a; HO (kp)ed™ =0 n=-2,-1,0,1,2 (3)

i=1

One coefficient is always arbitrary, so let us set the sixth one
to 1. Furthermore, the form of the above system of equations
indicates that the coefficients are symmetric. Therefore, we
can write:

04 = Qo
as = a1 C)
ag = 1

We have only three unknown coefficients left: a3, a2, and as.
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III. ASYMPTOTIC ANALYSIS FOR
ELECTRICALLY LARGE CYLINDER

We are now in position to solve for the MEI coefficients.
However, the analytic result is not very enlightening due to
its great complexity. Much more insight is gained if we use
the asymptotic form of the terms appearing in (3) when the
electrical radius kb of the outer mesh boundary is large. These
expansions can be found in [6]. Even when the asymptotic
approximations are used, the solution of (3) is best left to one
of the computer programs for symbolic manipulation. MAPLE
[7] is used to obtain the following solution:

1 3+ (arkAp)® + j3kAp

T T35, kAp)? + j3kAp
1 _ikap 3+ (arkAp)® — j3kAp 1
o L2V 1 5
e 3= B(arkhp)? + j3kAp [ Ol ©
a-= _e—jkAp?’ - 5(akAp)? — j3kAp

3 — 5{(a-kAp)? + j3kAp
where . stands for the aspect-ratio of the FD cell defined by:

_bA¢
ar—Ap

A detailed derivation of this result can be found in [3].

The asymptotic form (5) can be compared to the actual co-
efficients obtained in the implementation of the MEI method.
The magnitude of the error is shown in Fig. 2 versus the
electrical size of the outer mesh boundary. The mesh has a
nodal density of 20 nodes per wavelength. The inclination of
the curves in this log-log plot ranges from 0.9891 to 0.9916
indicating that the error is approximately proportional to 1/kb,
which agrees with the result in (5).

(©)

IV. EQUIVALENT DIFFERENTIAL EQUATION

We now investigate the limiting case when the size of the
FD cell goes to zero. To this end, let us assume that some
field F'(p, ¢) satisfies the MEI boundary condition (1). With
reference to Fig. 1 this can be written as an ordinary finite
difference equation in polar coordinates:

BF =F(b,0) + a1[F (b, —A¢) + F(b, A¢)]
+ az[F (b~ Ap,—A¢) + F(b— Ap, Ag)]
+a3F(b— Ap,0) =0 )

To determine the differential equation associated with this
difference equation, we should replace the values of the field

10' 10
kb

Fig. 2. Plot of the magnitude of the error in the asymptotic. expansion for
the MEI coefficients as a function of the electrical radius kb of the outer mesh
boundary (20 nodes per wavelength, the lowest order sinusoidal metrons).

F at different nodes with its Taylor expansion centered at node
6. We should also have in mind that the MEI coefficients a;
depend on the cell size according to (5), which allows us to
write (7) in the following form:

BF = —202(kAp)>LF + O(Ap*) =0 ®)
where L is a linear differential operator given by:
0 a? 4 1 o°
= (k) (RO 942 A(kD)? 0(kp)092
Therefore, L is the differential equation that is equivalent to
the MEI when the cell size is infinitely small.

A detailed derivation of this result and some of its impli-
cations are given in [3].

L
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V. A DIFFERENT SET OF METRONS

All 'the results derived so far correspond to the choice of
metrons given by (2). What if a different set of metrons is
used? For example:

e—jkl;q&, e—J’d” 1, ej¢, eJkbe (10
The first and the last metron in this set correspond to the
sinusoidal current that has the same wavelength in the ¢
direction as the incident wave. These metrons are chosen for
no particular reason except to simplify the results. Namely,

1 1 — cos(arkAp) + ja2kAp(elFAr — 1)
M=731 0 cos(a kAp) + ja2kAp(ei*Ar — 1)cos(a,-kAp)
1 1 — cos(arkAp) + ja2kAp(l — e~ kAP 1
az =5 (cn ko) + jer kDl ) +O(v75) (11)
21 — cos(a,-kAp) + ja2kAp(ei*2r — 1)cos(arkAp) (kb)
a 1 — cos(arkAp) + jakAp(1 — e~ T*2P)cos(akAp)
3= —

1 — cos(a, - kAp) + jo2kAp(eikAr — 1)cos(ankAp)
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we can follow exactly the same steps that were outlined in the
previous sections.

For the asymptotic form of the MEI coefficients we obtain
(11), shown at bottom of previous page, and for the equivalent
differential equation we derive:

1. 0 1 82 1 9°

=35 T Gar og * ame

20672 8ep)ogE (1P

VI. CONCLUSION

The measured equations of invariance resulting from two
different sets of metrons, (2) and (10), are compared. We found
that the MEI coefficients have different asymptotic forms in
each case, (5) and (11). Even when the nodal separation goes
to zero, these two choices of metrons result in two different
boundary conditions, as demonstrated by (9) and (12). Thus,
we can conclude that the MEI is not invariant to the choice of
metrons, and consequently, the postulate of invariance must
be incorrect. Furthermore, (8) indicates that the residual of
the MEI BF equals zero to within third order accuracy with
respect to the FD cell size. However, the differential equation

LF = 0 is enforced only to the first order accuracy. The
results indicate that an optimum choice of metrons depends
on the particular excitation and geometry in question.
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